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In this work, we consider an Ising model which allows spin-spin interaction in the systems. 
We assume that two-level quantum systems are randomly located in N nodes of a complex 
annealed scale-free network described by the Barabasi-Albert model. It is defined by the 
power-law degree distribution of nodes. We consider the mean-field approach to the sys-
tem described by the Ising Hamiltonian. At a certain level, the system is totally characterized 
by the order parameter Sz. It contains a critical inverse temperature β, which depends on 
parameter ζ2 as the ratio of the second to the first moment of the degree distribution. We 
have found that for ζ2, that exceeds its critical value ζ2,c, high temperature phase transition 
occurs that can be explained by the hubs and clusters which appear in scale-free networks. 
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1. INTRODUCTION 

During recent years, due to developing quantum technol-
ogies, there has been a growing interest in the study of 
phase transitions (PTs), as well as the impact of various 
nonlinear effects on it [1,2].  

The nonlinearity, as usual, is really small even in an 
interacting gas of particles. However, as will be demon-
strated in this work, if the particles are “packed” in a spe-
cial way, such nonlinearity can play a very important role.  

The Ising model (IM) presented in this work possess 
nonlinear features due to spin-spin interaction. Spins are 
localized in each node of the graph that leads to inhomo-
geneous spin-spin interaction across the network. Thus, 
during the propagation of an external magnetic field, the 
features of the network — such as the degree distribution 
function of nodes, which is determined by the type of 
structure — are still taken into account. 

The IM is intensively used in many areas of physics 
[3] and beyond [4–6]. Typically, the collective spin com-
ponent 1 z

z iN i
S = ∑σ  represents order parameter for 

various Ising-like models [3]; z
iσ  is z component of i-th 

particle spin, N is a number of particles. The zS  demon-
strates second order PT from paramagnetic (non-ordered 
state with 0zS = ) to ferromagnetic (fully ordered state 
with 1zS = ). 

In this work we consider a general approach to the 
problem of PTs arising in the network structure and 
caused by the network finite size effect and nonlinear ef-
fects. We investigated the influence of the node degree 
distribution moments on the PTs in a network structure 
with a power distribution of degrees of nodes using the 
adapted Barabasi-Albert algorithm. 

We used the mean field approximation for the IM de-
fined on graph structures and obtained an equation for one 
of the order parameters of the system. This expression al-
lows us to establish the condition of the PT from the para-
magnetic state to the ferromagnetic one. We obtained crit-
ical values of PT temperatures with an external magnetic 
field and without one. As a result, we are going to establish 
a clear relationship between the temperature of the system 
and the statistical properties of the network.  
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2. METHODS. THE ISING MODEL 

We started with the IM defined on annealed networks. It 
was assumed that two-level quantum systems are ran-
domly located in N nodes of a complex network (see 
Fig. 1). The Hamiltonian of the system is given as [7]: 

, , 1,..., ,1
2

z z z
ij i j i i

ij i

H Nh iJ j= − σ σ − σ =∑ ∑  (1) 

where ih  is a parameter characterizing the interaction of  
i-th spin with an external magnetic field. The first term in 
Eq. (1) characterizes interaction between spins and is de-
scribed by ijJ  parameter. In fact, ijJ  determines the topology 
of the interaction of spins. For the sake of simplicity, we set 

ih h=  for arbitrary i (hereafter we put the Planck and Boltz-
mann constants: 1,=  1Bk = , for brevity). 

In quantum optics Hamiltonian (1) may be realized by 
means of set of coupled microcavities (micropillars) 
which contain quantum dots as a two-level (spin-like) sys-
tems (TLS) [8]. Since microcavities and quantum dots 
pose various decoherence mechanisms we assume that 

strong coupling between TLS and quantized field is ful-
filled [9]. Such a condition allows to consider whole sys-
tem as thermodynamically equilibrium, as it is assumed 
with exciton-polariton Bose-Einstein condensates; see, 
e.g., Ref. [10]. 

3. COMPLEX NETWORK STRUCTURES 

Networks are widely distributed in nature and used in vari-
ous technical applications and society, thus attracting atten-
tion of researchers from various fields of science [11–14]. 
A system with a network architecture is displayed as a 
graph, which is a convenient way to determine the rela-
tionship between a group of elements. It consists of a set 
of objects called nodes connected by links (edges). Graphs 
are quite useful because they represent a mathematical 
model of network structures. The structure (configuration) 
of the connections between them defines the topology (ar-
chitecture) of networks. In real networks, the topology of 
links is usually irregular, but at the same time it is not ran-
dom. Networks with such features are usually called com-
plex networks. 

 (a) (b) (c) 

(d) 

Fig. 1. Power-law degree distribution networks for (a) γ = 1.5, (b) γ = 2.5, (c) γ = 4, which correspond to anomalous, scale-free and 
random regimes, respectively, (d) power-law degree distributions in a logarithmic scale for the networks given in (a–c). The number 
of nodes is N = 500. 
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Typically, a network is defined as an ensemble con-
sisting of a finite number of N spins 1/2 (such as electrons) 
placed in nodes [15], where each particle occupies only 
one node. The topology is defined by ijJ  parameter, which 
stores information about the graph structure. In this work 
we use the annealed network approach, which assumes a 
weighted, fully connected graph model. We recast param-
eter ijJ  that indicates the coupling between the nodes in 
Eq. (1) through probability ijp  as ij ijJ Jp= , where J  is a 
constant, and ijp  is the probability for two nodes i and j to 
be connected: 

,i j
ij

k k
p

N k
=

〈 〉
 (2) 

where ik  is i-th node degree, which indicates an expected 
number of the node neighbors and is taken from distribu-
tion ( )p k ; 1

ijNk k〈 〉 = Σ  is an average degree. Noteworthy, 
the annealed network approach is valid for 1ijp <<  and 
large enough N [16]. Thus, the strength of two spins inter-
action ijJ  is a variable parameter and depends on particular 
network characteristics; it is greater for two pairs of nodes 
with the highest k coefficient. 

In practice, different approaches provide an explana-
tion for a real-world network topology [17]. Such net-
works may exhibit the power-law degree distribution. 
Since the number of nodes is large enough (  1N >> ) we are 
interested in network structures, which admit continuous 
degree distribution of nodes  ( )p k  determining the proba-
bility that a randomly selected node has a certain number 
of connections 𝑘𝑘. 

This work considers a scale-free network architecture 
described by the Barabasi-Albert model [17]. It is defined 
by the power distribution of the degree of nodes as: 

( ) ( ) 11
,mink

p k
k

γ−

γ

γ −
=  (3) 

where γ  is the exponent, and mink  is a minimal connectivity 
found in the network with given distribution. 

An important feature of a scale-free network is the 
presence of hubs. The largest node is described by the de-
gree maxk , and obeys a condition called the natural cutoff: 

( ) 1 .
maxk

p k dk
N

+∞

=∫  (4) 

It can be used if the network with N nodes possess 
more than one node with   maxk k> . From Eq. (4) we obtain 

1
1 .max mink k N γ−=  (5) 

Fig. 1d shows probability distribution function (3) 
plotted in a logarithm scale for the networks which are 
shown in Figs. 1a–c. The node degree fluctuations grow at 

  3γ≤ . Hubs in Fig. 1d appear as colored dots in the upper 
right corner of the plot. 

The number of hubs and their size dramatically in-
crease with vanishing γ  in the anomalous regime where 

/   max mink k N>  (see Fig. 1a and the magenta line in 
Fig. 1d). 

The main characteristics of the network architecture 
may be characterized by means of the first ( k〈 〉) and the 
n-th ( nk〈 〉 ) moments. The n-th moment is calculated as: 

( ) ( ) ,
max

min

k
n n

k

nK k k p k dk=〉= 〈 ∫  (6) 

where n is a positive integer. In this work, we are inter-
ested in the first and normalized n-th order (n = 2,3,4) de-
gree correlation functions which are defined as  

( )

(1) ,  2,3, 4.
n

n
K n
K

ζ = =  (7) 

Eq. (7) defines the main statistical values for the selected 
network. 

Remarkably, the n-th order correlation functions de-
fined in (6) diverge at  1 γ = . On the contrary, their combi-
nation (1) 2 (4) (2) 3[ ] / [ ]K K Kτ ≡  remains finite. According to 
the network theory [13], the power distribution has the fol-
lowing regimes. In anomalous (1 < γ < 2) and scale-free 
(2 < γ < 3) regimes scale-free network possesses a set of 
topological features (for example, clusters and hubs) that 
support ordered state for IM; γ > 3 corresponds to random 
regime. It is known, that for random regime the difference 
in k  and 2ζ  disappears [12,13]. 

4. PHASE TRANSITION 

In this work the mean-field approach to the system de-
scribed by the Ising Hamiltonian (1) was considered. Such 
an approach presumes calculation of partition function 
( ) /Tr H TZ T e− =   with Eq. (1), neglecting quantum corre-

lations which occur between the spins; T is a temperature 
parameter that is relevant to whole ensemble of spins; see 
Refs. [3,7]. At certain level, the system is totally charac-
terized by the order parameter zS  defined as 

1 ,z
z i i

i

S k
N k

= σ
〈 〉

〈 〉∑  (8) 

that represents a weighted average spin component [7]. 
Collective variable zS  obeys self-consistent equation: 

( )1 ( ) tanh 4 ,
2

max

min

k

z z
k

S k p k J S k h dk
k

β = + 〈 〉  ∫  (9) 

where 1/ Tβ ≡  is inverse temperature. Eq. (9) uses integral 
form instead of summation. 
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At high temperatures and non-zero external field, 
Eq. (9) admits non-zero solution for collective spin com-
ponent zS . This solution corresponds to some ferromag-
netic phase with 0zS ≠ . Critical inverse temperature cβ , 
which provides this solution, is determined from Eq. (9) 
and obtained as 

2

1 ,
2c J

β =
ζ

 (10) 

where parameter 2  ζ  is defined in Eq. (7). 
Simultaneously, large number of hubs can manifest the 

activity of spins. In this limit 2  ζ  is also large enough and 
corresponds to high temperature of PT cT . Critical temper-
ature cT  becomes too large ( 0cβ  ) in the vicinity of  1 γ =  
where 2  ζ  rapidly increases; see Fig. 2a. In the opposite 
case, for large degree exponent γ parameter 2ζ  approaches 

mink  and critical temperature becomes c minT k∝ . 
Remarkably, similar arguments are still true in the 

mean-field approximation if we neglect degree correla-
tions in the network and put in Eq. (10) 2 kζ 〈 〉 , which 
leads to 

2 .cT J k〈 〉  (11) 

Eqs. (10), (11) play an important role in PT occurring 
in the finite-size IM. They establish a strong connection 
between the system temperature and network statistical 
features. For a given temperature T the critical value 2,cζ  
is determined from (10) as 

2, .
2c
T
J

ζ =  (12) 

Then, we approximate tanh( ) x  function in Eq. (9) as 
31

3tanh( )x x x≈ − , where 2 (4 )zx JS k hβ= + . In this limit 
Eq. (9) can be represented in the form 

3
1 2 0,

2z z
hS S
T

α −α + =  (13) 

where coefficients 1α  and 2α  are defined as: 
3

2 2
1 2 3

2, 2,

1,   .
3c c

ζ ζ
α −

ζ ζ
τ

= α =  (14) 

From Eq. (13) in the vicinity of critical point 2 2,cζ = ζ  
and for 0h =  we get: 

1/2

2

2,

3 1 ,z
c

S
  ζ

= −   τ ζ   
 (15) 

where τ is defined in Sec. 3. 
The features of parameter τ may be inferred from 

Fig. 2a. The magnitude of τ is finite at 1γ =  and has its max-

imum value at 1
2 ln 2 ln (ln 4)max N N N γ + − −  , 

which implies 2.25maxγ ≈  for the networks with N = 500 

nodes given in Figs. 1 and 2a, respectively. For Ising spin 
system determined by Hamiltonian (1) Eq. (15) establishes 
the second order PT from paramagnetic state ( 0zS = ) to 
ferromagnetic one ( 0zS ≠ ), which occurs if normalized de-
gree correlation function obeys the condition 2 2, cζ ≥ζ . For 
social network systems, such a PT indicates transformation 
from disorder to some ordered state. Hence, PT for the ana-
lyzed IM appears only due to finite size effects [17,18]. 

The main features of spin network are presented in 
Fig. 2b establishing behavior of average node degree k and 
correlation functions  nζ  ( 2,3, 4n = ) and τ. These features 
are well distinguishable within anomalous (1 < γ < 2) and 
scale-free (2 < γ < 3) regimes, respectively. On the other 
hand, differences in  nζ  behavior vanish for large γ; in this 
limit the parameter   τ  responsible for some combination of 
degree correlation functions goes to unity (see Fig. 2b). 

Remarkably, power-law degree distribution network 
parameter 2  ζ  is the function of number of nodes N. The 

 (a) 

(b) 

Fig. 2. Dependence of (a) k, τ, 2ζ , 3ζ  and 4ζ  on degree exponent 
γ for 2mink = , N = 500, and (b) 2ζ  (dash line) and k〈 〉  (solid lines) 
on N for 2mink = , and different values of γ. Both figures are plot-
ted in logarithmic scale. 
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dependence of 2  ζ  on N for various γ is demonstrated in 
Fig. 2b. As we can see, 2  ζ  grows within the anomalous 
domain of γ. Therefore, all networks, which possess a 
growing number of hubs (decreasing γ), promote the oc-
currence of some ordered state. 

In the presence of non-vanishing external (pump) 
field h for 2ζ → 2,cζ  the order parameter may be obtained 
as: 

1 1
3 3

2,

,3 3
4 4z

c c

h hS
J J k

   
    τζ 〈 〉  
   (16) 

where we assume 1τ   and 2,c ckζ 〈 〉 . The Eq. (16) rep-
resents the dependence of order parameter on degree ex-
ponent γ for scale-free networks; see Fig. 2. 

5. CONCLUSION 

In this work, we studied the features of the formation of a 
network structure with a power-law distribution of degrees 
of nodes using the adapted Barabasi-Albert algorithm un-
der the condition of the Ising model. Since this work uses 
the mean field approximation, assuming that each spin is 
affected by the mean field from the other spins, we inves-
tigated how to build a more accurate model using this ap-
proximation. 

We obtained an equation for the order parameter of the 
system determining the weighted average spin component. 
This expression allows us to establish the condition of the 
PT from the paramagnetic state to the ferromagnetic one. 
Critical values of PT temperatures are obtained in the pres-
ence and absence of an external field. The resulting equa-
tions establish a clear relationship between the tempera-
ture of the system and the statistical properties of the 
network. This research opens new possibilities for explor-
ing macroscopic quantum states of matter for the develop-
ment of new materials as well as for the development of 
new algorithms for information processing. 
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УДК 538.97 

Фазовые переходы в модели Изинга, определенной на сложных  
сетях 

М. Никитина, А. Баженов 

Институт перспективных систем передачи данных, Университет ИТМО, Кронверкский пр., 49, лит. А, Санкт-Петербург, 
197101, Россия 

 

Аннотация. В данной работе рассматривается модель Изинга, допускающая в системе спин-спиновое взаимодействие. Пред-
полагается, что двухуровневые квантовые системы случайным образом расположены в N узлах сложной отожженной безмас-
штабной сети, описываемой моделью Барабаши-Альберта. Сеть характеризуется степенным распределением степеней узлов. 
В работе рассматривается подход среднего поля к системе Изинга. В рамках данного подхода система полностью характери-
зуется параметром порядка Sz и критической обратной температурой β, которая зависит от параметра ζ2 как отношения пер-
вого и нормированного n-го моментов распределения степеней узлов. Было обнаружено, что при превышении параметром ζ2 
своего критического значения ζ2,с происходит высокотемпературный фазовый переход, который может быть объяснен хабами 
и кластерами, которые появляются в безмасштабных сетях. 

Ключевые слова: модель Изинга; фазовые переходы; сложные сеть; микрорезонаторы; наноматериалы 


